

Quantum Computing

19th July 2022, BNL Physics Summer Lecture

João Barata, Nuclear Theory Group and C2QA

About me

My name: João Barata

Current position: post-doc

If you have questions or want to chat, you can find me in 2.42

Why Quantum Computing?

Richard Feynman

We believe Nature is fundamentally quantum

Simulating Physics with Computers

Richard P. Feynman

"Nature isn't classical
... and if you want to make a simulation of Nature,
you'd better make it quantum mechanical,
and by golly it's a wonderful problem,
because it doesn't look so easy."

Why Quantum Computing?

Richard Feynman

We believe Nature is fundamentally quantum

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY SIMULATED BY A CLASSICAL COMPUTER?

In practice for QCD: \$\$\$\$

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY SIMULATED BY A CLASSICAL COMPUTER?

quantum

In principe yes, but

... and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

"Infant" field in the intersection of many sub-fields

"Infant" field in the intersection of many sub-fields

What I mean by infant

What I mean by infant

Overview

1 From Classical to Quantum Mechanics

From Classical to Quantum Computing

Application to High Energy Physics (HEP)

Classical mechanics

Consider ω a classical distribution

This satisfies a Liouville equation

$$\partial_t \omega(x, p) = \mathcal{L}\omega$$

Equivalent to **Newton's laws**

$$\overrightarrow{F} = m\overrightarrow{a}$$

Classical mechanics

Some classical axioms:

The state of the system can be identified with $\omega \geq 0$

$$\partial_t \omega(x, p) = \mathcal{L}\omega$$

Probabilities: $\delta p \, \delta x \, \omega(x, p)$

The system can be measured trivially

Quantum mechanics

Quantum case: state described by wavefunction ψ

This satisfies a **Schrodinger equation**

$$i\partial_t \psi(x,p) = \mathcal{H}\psi$$

And classical probabilities are related to

$$|\psi(x,p)|^2$$

Quantum mechanics

Some quantum axioms:

The state of the system is described by $\psi \in \mathbb{C}$

$$i\partial_t \psi(x,p) = \mathcal{H}\psi$$

Probabilities: $|\psi|^2$

The system can be measured but

Quantum mechanics

Quantum Superposition:

The state of the system is described by $\psi \in \mathbb{C}$

Any combination of ψ is still a valid state!

but probabilities: Prob $\sim |\sum \psi|^2$

Quantum interference!

Remember: probabilities add to 1

Discrete quantum mechanics

Example: electrons have electric charge -1, mass m_e and spin 1/2

If we ignore all other dynamics, then this is a 2 state quantum system

Discrete quantum mechanics

An aside: Stern-Gerlach experiment Classical prediction What was Silver atoms actually observed Walter Gerlach & Otto Stern Furnace

Inhomogeneous

magnetic field

What is the relation to computation?

Modern computers are made of basic information units: bits

Let's call these:

 $|1\rangle$

 $0\rangle$

Modern computers are made of basic information units: bits

Example:

Time evolution of information: just draw some lines

I will rewrite this in a more convenient notation

 $\psi = \{0,1\}$ (bit). Only two possible operations

 $\{0,1\}$ $\{0,1\}$

a.k.a NOT $\{0,1\} \qquad \boxed{\sigma_{\text{class.}}^{x}} \qquad \{1,0\}$

$$\psi = \{0,1,2,3\}$$
 (in binary)

$$\{0,1\}$$
 $\{0,1\}$ $\{0,1\}$

I will rewrite this in a more convenient notation

Measurement:

Non-trivial topologies:

Quantum computers are made of basic information units: qubits

The simplest example: 1 qubit $|\psi\rangle = a|0\rangle + b|1\rangle \equiv a|\uparrow\rangle + b|\downarrow\rangle$

Quantum computers are made of basic information units: qubits

How many bits to get the same computing power?

Quantum computers are made of basic information units: qubits

How many bits to get the same computing power?

Let's revisit the previous diagrams

$$|0\rangle = \begin{vmatrix} 1\\0 \end{vmatrix}$$

For 1 qubit

Infinite set of operations:
$$|\psi\rangle = a\,|\,0\rangle + b\,|\,1\rangle \equiv a\,|\,\uparrow\,\rangle + b\,|\,\downarrow\,\rangle$$
 $|\,1\rangle = \begin{vmatrix} 0\\1 \end{vmatrix}$

$$\begin{vmatrix} \psi \rangle & |\psi \rangle \\ |\psi \rangle & |\psi \rangle \\ |\psi \rangle & |\psi \rangle \\ |\psi \rangle & |\psi \rangle & |\psi \rangle \\ |\psi \rangle & |S \rangle & |\psi \rangle$$

Remember: probabilities add to 1
$$\longrightarrow$$
 U^{\dagger} U = 1

Let's revisit the previous diagrams

For 2 qubits
$$|\psi\rangle = \sum_{i,j} c_{ij} |x_i, x_j\rangle$$

Single qubit operations generalize in a simple way, for example

$$1 \otimes H | \psi \rangle \qquad = \qquad \qquad H$$

Let's revisit the previous diagrams

For 2 qubits
$$|\psi\rangle = \sum_{i,j} c_{ij} |x_i, x_j\rangle$$

But things can get interesting

Let's revisit the previous diagrams

Example and first quantum circuit:

$$|\downarrow\downarrow\downarrow\rangle \rightarrow \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle)$$
 Bell state

SOLUTION?

Let's revisit the previous diagrams

Example and first quantum circuit:

$$|\downarrow\downarrow\rangle\rangle \rightarrow \frac{1}{\sqrt{2}}(|\downarrow\downarrow\rangle\rangle + |\uparrow\uparrow\rangle)$$
 Bell state

$$\frac{|\downarrow\rangle}{|\downarrow\rangle} \qquad H \qquad \frac{\frac{1}{\sqrt{2}}(|\downarrow\rangle+|\uparrow\rangle)}{H} \qquad \frac{H\otimes 1}{\sqrt{2}}(|\downarrow\downarrow\rangle+|\uparrow\downarrow\rangle)$$

Let's revisit the previous diagrams

Example and first quantum circuit:

$$|\downarrow\downarrow\downarrow\rangle \rightarrow \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle)$$
 Bell state

$$|\downarrow\downarrow\downarrow\rangle \xrightarrow{H\otimes 1} \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\downarrow\rangle) \xrightarrow{\text{CNOT}} \frac{1}{\sqrt{2}}(|\downarrow\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle)$$

Finally we have

Measurement:

Non-trivial topologies:

What is the relation to HEP?

Challenge: Simulate Pancake-Pancake event at RHIC

Relativistic Heavy Ion Collider

Challenge: Simulate Pancake-Pancake event at RHIC

You saw this figure in R. Pisarski lecture a couple of weeks ago

Pancake-Pancake event at RHIC

Strategy: We know that

$$i\partial_t |\psi\rangle = H|\psi\rangle$$
 so $|\psi\rangle(t) = \exp(-iHt)|\psi\rangle(0)$

- 1. Map dofs to qubits
- 2. Write evolution operator in terms of gates
- 3. Measure the state

An example

Disclaimer: Going fast here, so don't worry if you don't follow 100%

Suppose: $H = \sigma^x \otimes \sigma^z$ and $\psi(0) = |\downarrow\downarrow\rangle$

$$\sigma^{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \sigma^{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$H = (Had \otimes 1)(\sigma^z \otimes \sigma^z) (Had \otimes 1)^{\dagger}$$

Exercise: check this

$$\sigma^{z} \otimes \sigma^{z} \begin{cases} |00\rangle = |00\rangle \\ |01\rangle = -|01\rangle \\ |10\rangle = -|10\rangle \\ |11\rangle = |11\rangle \end{cases}$$

$$\exp(-it(\sigma^z \otimes \sigma^z)) = \frac{1}{|0\rangle - \sigma^x} \frac{1}{|\sigma^x|} \frac{1}$$

In reality: scattering in scalar QFT

Introduce lattice

Two particles scattering to four particles

Figure by H. Lamm

Meaningful simulations will require something in the order of thousands of high quality qubits!

Some key ideas

Quantum computing is picking up steam

Some key ideas

Quantum computing is only starting in HEP/NP

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Quantum Simulation for High Energy Physics

I. Physics drive: Collider phenomenology

II. Physics drive: Matter in and out of equilibrium

III. Physics drive: Neutrino (astro)physics

IV. Physics drive: Cosmology and early universe

V. Physics drive: Nonperturbative quantum gravity

To find the full document Google: arxiv 2204.03381

Some key ideas

3

Quantum computing has a wide range of applications

Some places to look for more info

Excellent introduction to QM and QC

+

Software to play around

Global introduction to QC